Motivation

Narrow field of view hinders context information:
1. Little interplay among objects; small # of objects per image
2. Occlusion is unpredictable: missing bed in bedroom

Data driven context model
1. Should be built in 3D space
2. Should be learnt from big data

Method

1. Vanishing Point Estimation:
- Hough Transform: vote line segments to uniformly sample directions on sphere; and select the three orthogonal directions with maximal sum of votes as the vanishing director.

2. Room Layout Estimation:
- 4-line sampling: randomly sample 4 line segments to form a room layout hypothesis.
- Use surface normal consistency with GC and OM to score these hypotheses and choose the top 5. This guarantees recall.

3. Object Hypothesis Generation:
- Randomly sample 5 line segments to form a room layout hypothesis.
- Use surface normal consistency with GC and OM to rank these hypotheses.
- Project webpage: http://panocontext.cs.princeton.edu

4. Data-driven sampling & Holistic ranking:
- Whole-room sampling to generate complete scene hypothesis:
 - 1. Randomly select a room layout according to their score evaluated by GC and OM.
 - 2. Decide the number of instances for each type of objects.
 - 3. Decide the sampling order for different object types according to statistic prior.
 - 4. Start from the 1st object; search for cuboids of the selected object type, and randomly choose a cuboid according to the unary constraints (rectangle scores, unary size distribution, random forest score).
 - 5. Go to the next object; randomly select cuboids further considering the pairwise constraint with already selected objects. Repeat until all the types are sampled.

Evaluation

- Room Layout & Object Recall
 - X: Image Score, Y: Semantic Score
 - Object Detection Compare with DPM
 - Pixelwise Accuracy of Room Layout Estimation

More Results

- Input Image & Reprojected 2D Result
- Merged OM+GC & Object Hypotheses
- 3D Result

References

1. PanoContext: Accepted by ECCV 2014. Code and dataset will be available soon.
2. Project webpage: http://panocontext.cs.princeton.edu