™8 PRINCETON
N VISION GROUP

PanoContext

A Whole-room 3D Context Model
for Panoramic Scene Understanding



Context is important
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Are you kidding me?



Context models

Torralba, Sinha (2001)

C. face
feature
from face
detection RS

image

Sudderth, Torralba,
e Wilsky, Freeman (2005)
from eye —
detection L

image

Desai, Ramanan, and Fowlkes (2009)

aero | bike | bird | boat |bottle| bus | car | cat |chair| cow |table | dog |horse| mbik
BB 339 | 381 | .067 | .099 | .278 | .229 | .331 | .146 | .153 | .119 | .124 | .066 | .322 | .366
context 351 | 402 | 117 | .114 | .284 | .251 | .334 | .188 | .166 | .114 | .087 | .078 | .347 | .395

DPM on PASCAL VOC [Felzenszwalb et al.]

Improvement on PASCAL <1.5%



What's the problem in context?



Game: What is this object?

Please speak out when you
recognize the object!



What is this object?
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What is this object?




What is th

11



What is this object?
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What is this object?
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What is this object?
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What is this object?




What is this object?




What is this object?




What is this object?




What is this object?
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What is this object?

Look-Alikes by Joan Steiner
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Small FOV, you will miss a lot!



How does large FOV help?

What a camera sees: 54° * | hat your eyes see: 270°

1. Is there a bed in the room? —>» Unpredictable visibility
2. Relation between bed and TV? =% Less interaction



How does large FOV help?
end

What a camera sees: 54< What your eyes see: 270°
360°
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PanoContext
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M/Output: 3D model Output: 3D room exploration



PanoContext
A 3D whole-room non-parametric context model



PanoContext
context model
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PanoContext
whole-room context model
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PanoContext
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PanoContext
whole-room

context model
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PanoContext

whole-room context model
= ™




PanoContext
whole-room context model




PanoContext
3D whole-room context model

place-centric view-centric
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Majority of the Literature

[Xiao et al. 2012, 2013]




PanoContext
non-parametric context model



PanoContext
non-parametric context model
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PanoContext
non-parametric context model

Lo
PNy J D
S

Q X

N
bedroom 0

S

’/
77

8 i1



¢/

PanoContext
non-parametric context model
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PanoContext
non-parametric context model
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PanoContext
non-parametric context model
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Our model: 3D whole-room context

— DPM: 2D local image appearance

bed nightstand

painting
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Algorithm



Algorithm

Step 1: Generate a pool of hypotheses
Step 2: Choose the best hypothesis




Algorithm

Step 1: Generate a pool of hypotheses

Room layout




Algorithm

Step 1: Generate a pool of hypotheses

D/,



Algorithm

Step 1: Generate a pool of hypotheses

D/,



Room layout hypothesis




Room layout hypothesis

Sample 5 line segments to generate a room layout



Room layout hypothesis

Sample 5 line segments to generate a room layout



Room layout hypothesis

Sample 5 line segments to generate a room layout



Room layout hypothesis
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Room layout hypothesis

53



Room layout hypothesis
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Room layout hypothesis

Consistency Score: 0.770
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Room layout hypothesis

56



Algorithm

Step 1: Generate a pool of hypotheses

D/,



Cuboid detection
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Fitted cuboids



From 2D to 3D
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Single view geometry
[Hoiem et al. 2006]




Semantic classification

Object Category

———————————————————————————— bed
desk

sofa

chair

Use 3D position & size for semantic classification



Semantic classification

Feature Classifier Object Category

————————————————————————————————— bed
desk

sofa

chair

Use 3D position & size for semantic classification



Semantic classification

3D Cuboid Feature Classifier Object Category

. Size bed
desk
sofa

chair

Use 3D position & size for semantic classification



Semantic classification

3D Cuboid Feature Classifier Object Category

- Size bed
- Aspect ratio & Area desk
sofa
chair

Use 3D position & size for semantic classification



Semantic classification

3D Cuboid Feature Classifier Object Category

Size bed

- Aspect ratio & Area desk
Distance to walls sofa

chair

Use 3D position & size for semantic classification



Semantic classification

Data???

'

3D Cuboid Feature Classifier Object Category

. Size — —>» bed
- Aspect ratio & Area W desk
. Distance to walls Yy sofa

chair

Use 3D position & size for semantic classification



2/3D annotation on panorama

® 06 W SUN Universal Annotator ®

&« Cat vision.cs.princeton.edu/projects /2012 /SUNannotator/annotator.htmi?file=index.json&pano=true&folder=common/SUN360/indoor/bedroom/pano_adremnuqxqrofw&w =

curtain

Cameras
Flles
Instructions




2/3D annotation on panorama
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Annotated panorama dataset

-
)

bedroom: 539 livingroom:448 bathroom:317  counter: 140



Semantic classification

2/3D annotated panorama

'

3D Cuboid Feature Classifier Object Category

. Size — —>» bed
- Aspect ratio & Area W desk
. Distance to walls Yy sofa

chair

Use 3D position & size for semantic classification



Hypotheses for some categories

bed
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Hypotheses for some categories

nightstand
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Algorithm

Step 1: Generate a pool of hypotheses

D/,



Data-driven sampling




Data-driven sampling

Decide object sampling sequence
poottom up scores:

window i 1 mirror
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Data-driven sampling

Sample a bed in empty room first...

- G

-

,.M

Bottom-up score as bed

76



Data-driven sampling

Sample a bed in empty room first...

Randomly select one according to priority
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Data-driven sampling

Then, sample a nightstand given a bed
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Data-driven sampling

Then, sample a nightstand given a bed

- = Confidence

Low .l High

Bottom-up score
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Data-driven sampling

Then, sample a nightstand given a bed

< &0

. Confidence

Low .l High

Bottom-up score+ Pairwise context
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Data-driven sampling

Then, sample a nightstand given a bed

%" Confidence

Low .l High

Bottom-up score+Pairwise context > Merged sampling prior
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Data-driven sampling

Then, sample a nightstand given a bed

Randomly select one according to the merged priority
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Data-driven sampling

Keep on sampling until finishing the list...

List: bed, nightstand,

, desk, window, painting, TV, sofa, mirror
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Data-driven sampling

Keep on sampling until finishing the list...

List: bed, nightstand, painting,

, window, painting, TV, sofa, mirror
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Data-driven sampling

Keep on sampling until finishing the list...

List: bed, nightstand, painting, desk, window, painting, TV, sofa, mirror
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Data-driven sampling

Keep on sampling until finishing the list...

List: bed, nightstand, painting, desk, window,

, TV, sofa, mirror
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Data-driven sampling

Keep on sampling until finishing the list...

List: bed. nightstand, pammting, desk, window, paimnting, TV, sofa, mirror
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Data-driven sampling

Keep on sampling until finishing the list...

painting §
des! .

|/

List: bed, nightstand, painting, desk, window, painting, TV, sofa, mirror
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Data-driven sampling

Keep on sampling until finishing the list...

List: bed, nightstand, painting, desk, window, painting, TV, sofa, mirror
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Data-driven sampling

Keep on sampling until finishing the list...

Whole-room sampling is finished.
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Algorithm

Step 1: Generate a pool of hypotheses




Algorithm

Step 2: Choose the best hypothesis




Holistic ranking
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Holistic ranking

Compute holistic feature for whole-room hypotheses
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Holistic ranking

Learn a linear SVM for scoring and take the best




Holistic feature

B
L q) = bottom-up feature + top-down feature



Holistic feature

N
i Q) =bottom-up feature+ top-down feature




Holistic feature

ﬂ): bottom-up feature +top-down feature

Ground Truth 1 Ground Truth 2 Ground Truth N

Hypothesis 0.20 1.40 0.90
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Holistic feature

B
1S -5 R {,_)z bottom-up feature +top-down feature

Hypothesis

Dataset

v

0

A ground truth room

Transform ground truth
to get more good rooms



Holistic feature

m B
i q) = bottom-up feature +top-down feature

ResizeY 0 | o Ja | Ta 1 Jg
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A ground truth room



Final output
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Automatic Recognition Results

‘).;‘ ‘.,'

...

Hundreds of results are available in our website.



Analysis



How does 3D context help?

- Helps to decide 3D sizes of objects

T (T

DPM: Wrong relative size PanoContext
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How does 3D context help?

- Helps to decide sizes of objects

- Helps to decide number of objects

DPM: Wrong number of objects Our detection
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How does 3D context help?

- Helps to decide sizes of objects

- Helps to decide number of objects

- Helps to constrain relative position

DPM: Wrong relative position Our detection
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Context vs. Appearance

* Context is as powerful as local appearance for object detection



Context vs. Appearance

* Context is as powerful as local appearance for object detection

bed
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Context vs. Appearance

* Context is as powerful as local appearance for object detection
* Context is complementary with local appearance

bed
1
- DPM
- 7 PanoContext
-?, Context+Detector
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v
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Is larger FOV helpful?

o
~

o
o))

[0.67] bed

[0.37] painting
== [0.36] mirror | | | | |

B [0.30] nightstand . N ]

—— [0.21] tv ‘ ‘ ‘

== [0.06] chair

o
&

o
~

o
[

o

o
—

F-score for object detection
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Context-based object detection



Is larger FOV helpful?

- Panorama
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04f | =—— Qur 0.92
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Accuracy

# of testing images

Room layout estimation
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PanoContext
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Large Field Of View 3D Whole-room  Context = Detector
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PanoContext

Data and code available:
http://panocontext.cs.princeton.edu
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http://panocontext.cs.princeton.edu

