

A Whole-room 3D Context Model for Panoramic Scene Understanding

Yinda Zhang Shuran Song Ping Tan[†] Jianxiong Xiao Princeton University [†]Simon Fraser University

Are you kidding me?

Context models

Torralba, Sinha (2001)

C. face feature from face detection image

feature from eye detection

Desai, Ramanan, and Fowlkes (2009)

Carbonetto, de Freitas & Barnard (2004)

Sudderth, Torralba, Wilsky, Freeman (2005)

Torralba Murphy Freeman (2004)

Heitz and Koller (2008)

Hoiem, Efros, Hebert (2005)

Rabinovich et al (2007)

Kumar, Hebert (2005)

	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbik
BB	.339	.381	.067	.099	.278	.229	.331	.146	.153	.119	.124	.066	.322	.366
context	.351	.402	.117	.114	.284	.251	.334	.188	.166	.114	.087	.078	.347	.395

DPM on PASCAL VOC [Felzenszwalb et al.]

What's the problem in context?

Game: What is this object?

Please speak out when you recognize the object!

Small FOV, you will miss a lot!

How does large FOV help?

What a camera sees: 54°

What your eyes see: 270°

- 1. Is there a bed in the room?
- Unpredictable visibility
- 2. Relation between bed and TV? \longrightarrow Less interaction

How does large FOV help?

What a camera sees: 360°

What your eyes see: 270°

Output: 2D projected result

Output: 3D model

Output: 3D room exploration

A 3D whole-room non-parametric context model

place-centric

[Xiao et al. 2012, 2013]

view-centric

Majority of the Literature

A 3D whole-room non-parametric context model

bedroom

A 3D whole-room non-parametric context model

A 3D whole-room non-parametric context model

Pairwise?
Hierarchical?

Gaussian?
Dirichlet?

A 3D whole-room non-parametric context model

Ultimate solution for all problems in the world:

Nearest Neighbor

A 3D whole-room non-parametric context model

- Our model: 3D whole-room context
- DPM: 2D local image appearance

Step 1: Generate a pool of hypotheses

Step 1: Generate a pool of hypotheses

Step 1: Generate a pool of hypotheses

Step 1: Generate a pool of hypotheses

Van is biographic trst

Sample 5 line segments to generate a room layout

Sample 5 line segments to generate a room layout

Sample 5 line segments to generate a room layout

Step 1: Generate a pool of hypotheses

Cuboid detection

Fitted cuboids

From 2D to 3D

Room

Object

[Hoiem et al. 2006]

3D Cuboid Feature Classifier

Object Category

- Size
- Aspect ratio & Area
- Distance to walls

2/3D annotation on panorama

2/3D annotation on panorama

room bed window door nightstand desk sofa chair coffee table

mirror cabinet wardrobe dining table tv stand end table tv

Annotated panorama dataset

bedroom: 539 living room: 448 bathroom: 317 counter: 140

Hypotheses for some categories

bed

Hypotheses for some categories

nightstand

Hypotheses for some categories

painting

Algorithm

Step 1: Generate a pool of hypotheses

Step 2: Choose the best hypothesis

Decide number of object Decide object sampling sequence based on prior distribution: based on bottom up scores: painting bed nightstand bed painting desk window painting sofa tv sofa window mirror

Sample a bed in empty room first...

Bottom-up score as bed

Sample a bed in empty room first...

Randomly select one according to priority

Then, sample a nightstand given a bed

Then, sample a nightstand given a bed

Bottom-up score

Then, sample a nightstand given a bed

Bottom-up score + Pairwise context

Then, sample a nightstand given a bed

Bottom-up score + Pairwise context → Merged sampling prior

Then, sample a nightstand given a bed

Randomly select one according to the merged priority

Keep on sampling until finishing the list...

Whole-room sampling is finished.

Algorithm

Step 1: Generate a pool of hypotheses

Step 2: Choose the best hypothesis

Algorithm

Step 1: Generate a pool of hypotheses

Step 2: Choose the best hypothesis

Holistic ranking

Holistic ranking

Compute holistic feature for whole-room hypotheses

Holistic ranking

Learn a linear SVM for scoring and take the best

f(m), = bottom-up feature + top-down feature

f() = bottom-up feature+ top-down feature

Hypothesis

Transform ground truth to get more good rooms

Final output

Living room

Automatic Recognition Results

Hundreds of results are available in our website.

Analysis

How does 3D context help?

Helps to decide 3D sizes of objects

DPM: Wrong relative size

PanoContext

How does 3D context help?

- Helps to decide sizes of objects
- Helps to decide number of objects

Our detection

How does 3D context help?

- Helps to decide sizes of objects
- Helps to decide number of objects
- Helps to constrain relative position

DPM: Wrong relative position

Our detection

Context vs. Appearance

• Context is as powerful as local appearance for object detection

Context vs. Appearance

Context is as powerful as local appearance for object detection

Context vs. Appearance

- Context is as powerful as local appearance for object detection
- Context is complementary with local appearance

Is larger FOV helpful?

Context-based object detection

Is larger FOV helpful?

Room layout estimation

PanoContext

Large Field Of View

3D Whole-room

Context ≥ Detector

PanoContext

Data and code available: http://panocontext.cs.princeton.edu